

February 2-3, 2022

Raghubir Gupta, Co-Founder of Susteon and Sustaera

Susteon Business Model and Team

MISSION

To develop and deploy decarbonization technologies by enabling disruptive innovations in CO₂ capture and utilization and carbon-free H2 production

APPROACH

De-risk technologies through extensive prototype development and testing while securing a strong IP position

PROCESS

Connect

- Academic / National Labs
- Dept of Energy (+ other Govt. agencies)
- Industry
- Private Sector / VC

Create

Carbon Dioxide

- CO₂ Capture
- CO₂ Utilization

Hydrogen

- Blue/Green Production
- Methane Pyrolysis

Commercialize

- Discovery & Commercial Value Decision
- Leverage Industry and Labs to Fail Fast
- Understand and Develop Go-To-Market Plan

RESEARCH & DEVELOPMENT TEAM

Raghubir Gupta President & Co-Founder

S. James Zhou Senior Director

Cory Sanderson **Process Technologist**

Vasudev Haribal Research Engineer

Aravind Rayer Research Engineer

Jonathan Peters Sr. Process Engineer

Arnold Toppo Research Engineer

Tyson Lanigan-**Atkins Materials Scientist**

Jian Zhena Sr. Research Engineer Sr. Research Engineer

Andrew Tona

J.P. Shen Sr. Chemist

Gary Howe Lab Director

BUSINESS & OPERATIONS TEAM

Shantanu Agarwal President / Co-Founder

Rich McGivney Chief Financial Officer

Sudarshan Gupta Commercial Lead

Brian Alexander Director. Contracts & Legal Affairs

Arleane McKiver **Executive Assistant**

Current Technology Portfolio

More than \$50M has been invested in the R&D for the development of technologies

Green / Blue Hydrogen Production

Natural Gas to H₂

Hydrogen production from natural gas with <3 kg CO₂ / kg H₂

CO₂ Capture Technology

Novel CO₂ capture agents that allow significant reduction in separation energy

CO₂ to Chemicals

Conversion of CO₂ into chemicals, fuels and construction materials

Our Vision on CO₂ Capture and Utilization

Extensive Experience in CCUS

- Susteon team has more than 100 man-years of experience in CO₂ capture technologies
- Developed technologies using
 - Solvents
 - Sorbents
 - Membranes
 - Hybrid systems
- Removal of CO₂ from point sources and process streams
 - CO₂ removal from syngas (H₂/NH₃ production)
 - Flue gas from coal combustion
 - Flue gas from NGCC
 - Flue gas from Cement plant
- CO₂ removal from air (DAC)
- Designed, built, and operated a 1,000 ton/day CO₂ capture plant at Polk Power site in FL.
- CO₂ utilization to produce value-added products

Current DAC Technologies

1. Membranes 5. Kelp/Seaweed-Based Capture 6. Liquid Solvents 2. Solid Sorbents Alkali metals (Sustaera) (chemisorption) **KOH** Amines (chemisorption) Retrofitting cooling towers Activated carbons (physisorption) **Amines Direct Air** Zeolites (physisorption) Capture (DAC) MOFs (physisorption) 7. Ocean Capture **Technologies** Resins (humidity swing) Electrodialysis Electrolysis 3. Electrochemical 8. Carbon Mineralization (+ Regeneration) 4. Cryogenic Coastal Arctic/Antarctica **Forests** Tropopause Land

Established and Emerging DAC Technology Players

- Big 3 (Carbon Engineering, Global Thermostat, Climeworks)
- 29 smaller companies, many of which have emerged in the last couple of years

CO₂ Utilization Challenge

Thermochemical Challenges

Reliable, inexpensive carbon-lean energy

Gaseous Carbon Waste Streams Utilization: Status and Research Needs (2019)

DETAILS

256 pages | 7 x 10 | PAPERBACK ISBN 978-0-309-48336-0 | DOI 10.17226/25232

Catalysts

CO_{2(g)} (-394 kJ/mole)

Thermodynamic Stability of CO₂

Partnership with DOE and Columbia University

SBIR Grant: DE-SC0020795

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Robert Farrauto

Chae Jeong-Potter

Monica Abdallah

Reactive Direct Air Capture (DAC) of CO₂

Dual Functional Material (DFM) captures CO₂ and releases into CH₄ upon conversion

$$CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$$
 $\Delta H = -165 \text{ kJ/mol of } CO_2$

Key Design Elements

- 1. CO₂ Adsorbent
 - 2. Methanation Catalyst
 - 3. Hydrogen
 - 4. Low Pressure
 - 5. Low ΔP
 - 6. Simple Design

Process Design Requirements

- Low cost, widely available
- Relatively high capacity (~ 4 wt%)
- Ambient temperature/humidity CO₂ adsorption
- Low regeneration energy
- Long-term, multi-cycle stability
- Alkali metal-oxides

Alkaline earth metal-oxides

Key Design Elements

- 1. Adsorbent
- **→** 2. Catalyst
 - 3. Hydrogen
 - 4. Low Pressure
 - 5. Low ΔP
 - 6. Simple Design

Process Design Requirements

- Overall reaction: $CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$
- Catalyze the Sabatier reaction

High surface area support

- Long-term, multi-cycle stability in between oxidative and reducing environments
- Low temperature methanation 180 300 °C

Key Design Elements

- 1. Adsorbent
- 2. Catalyst
- 3. Hydrogen
 - 4. Low Pressure
 - 5. Low ΔP
 - 6. Simple Design

Process Design Requirements

Key Design Elements

- 1. Adsorbent
- 2. Catalyst
- 3. Hydrogen
- 4. Low Pressure
 - 5. Low ΔP
 - 6. Simple Design

Process Design Requirements

- Avoid need for upstream compressors
 - Air compression not needed for adsorption
 - H₂ compression not needed for regeneration
 - Low pressure electrolysis
 - Low pressure waste hydrogen
- Reduce CAPEX and OPEX

Key Design Elements

- 1. Adsorbent
- 2. Catalyst
- 3. Hydrogen
- 4. Low Pressure
- **→** 5. Low ΔP
 - 6. Simple Design

Process Design Requirements

- Maximize energy efficiency
- Reduce fan power demand
- Use scalable monolith supports for high surface area, low pressure drop

Key Design Elements

- 1. Adsorbent
- 2. Catalyst
- 3. Hydrogen
- 4. Low Pressure
- 5. Low ΔP
- → 6. Simple Design

Process Design Requirements

Utilizing Dual Functional Materials (DFM) for reactive Direct Air Capture (DAC) of CO₂ into Renewable Natural Gas (RNG) from Waste Hydrogen

DAC-DFM Technology Development Pathway

Proof of Concept: Adsorbent + Catalyst System

Thermal gravimetric analysis: Adsorption @ 25°C on 1% Ru, 10% sorbent/Al₂O₃ granules with 375 ppm CO₂/air

1% Ru, 10% Na₂O/Al₂O₃ (Ru + Na, green) shows the **highest** CO₂ capture capacity (~3% weight capacity).

Cyclic packed bed: Adsorption @ 25°C and methanation at 300°C on 1% Ru, 10% Na₂O/Al₂O₃ granules

Multiple cycles in a TGA and packed bed clearly show consistent DFM regenerability with H₂ at suitable temperatures.

Adsorption Rate: 1% Ru, 10% Na₂O on Alumina DFM

Sample: 1% Ru, 10% Na₂O/Al₂O₃ granules

DFM granules development and testing

Cyclic operation

- 0.5g of 1% Ru, 10% Na₂O/Al₂O₃ granules
- Pre-reduction: 3 hours at 300°C in 20% H₂/N₂

Cycle Step	Duration	Gas
Adsorption @ 25°C	2 hours	400 ppm CO ₂ /air @ 400 ml/min
Heating to 300°C	30 min	15% H ₂ /N ₂
Methanation @ 300°C	2 hours	@ 100 ml/min

Average CO ₂ Ads.	Average CH ₄ Prod.
547 µmol/g _{DFM}	300 µmol/g _{DFM}

1% Ru, 10% Na₂O DFM shows stable performance for 10 cycles of capture/methanation.

Humid Air - Experimental Results

1% Ru, 10% Na₂O/AI₂O₃

Ads. Condition	Avg. CO ₂ Capacity	Avg. CH ₄ Prod.
Dry	626 µmol/g _{DFM}	395 µmol/g _{DFM}
Humid	1521 µmol/g _{DFM}	965 µmol/g _{DFM}

- CO₂ capture capacity increases significantly, by 2.4 times, in humid conditions.
- Methanation light off occurs around 140°C, about 40°C lower than our previous studies on Ru-Na₂O.
- We observed an approximate 45% decrease in CO₂ desorption during heating and methanation.

^{*} Note: Methane production not measured for Cycle 2.

Improved adsorption and methanation in humid adsorption conditions

Cyclic operation

1300 µmol/g_{DFM}

- 0.5g of 1% Ru, 10% Na₂O/Al₂O₃ granules
- Pre-reduction: 3 hours at 300°C in 20% H₂/N₂
- Adsorption in humid conditions: ~2% H₂O

Cycle Step	Duration	n Gas
Adsorption @ 25°C	4 hours	400 ppm CO ₂ /humid air @ 400 ml/min
Heating to 300°C	30 min	15% H ₂ /N ₂
Methanation @ 300°C	2 hours	@ 100 ml/min
Average CO ₂ Ads.		Average CH ₄ Prod.

1% Ru, 10% Na₂O DFM improved performance in humid adsorption conditions; stable performance for 5 cycles of humid ads/methanation

1040 µmol/g_{DFM}

Transition to monolithic supports

Advantages to using monoliths:

- Resistance to cracking when operating across broad temperature range
- Cost effective due to mass production
- Clear flow path results in low pressure drop relative to packed bed
- Design a process for heating only the washcoat for methanation
- Preliminary studies of CO₂ adsorption/desorption in DAC conditions using monolithic substrates are underway.
- Initial coating of TiO₂ monolith with Na₂O-impregnated alumina was very successful.

The DFM is composed of an alkaline sorbent (Na₂O) and metal catalyst (Ru) dispersed on γ -Al₂O₃ powder.

Monolith before (left) and after (right) washcoating

Cyclic performance of Ru, Na₂O/Al₂O₃ //monolith: Short term stability demonstrated

Sample: Ru, Na₂O/Al₂O₃//monolith

- 2 g/in³ washcoat loading
- <0.2% Ru, 40% Na₂O
- Pre-reduction: 5 hours at 300°C in 20% H₂/N₂
- All cycles in humid condition ~2% H₂O

Step	Time	Gas	Flowrate
Adsorption (25°C)	3 hr	400 ppm CO ₂ / humid air	24 L/h/g (353 ml/min)
Purge (25°C)	15 min	Pure N ₂	6.8 L g ⁻¹ h ⁻¹ (100 ml/min)
Heating (10°C/min)	30 min	15% H ₂ /N ₂	9 L/h/g (133.3 ml/min)
Methanation	1.5 hr	15% H ₂ /N ₂	9 L/h/g (133.3 ml/min)

Process Cycle Design - Air Contactor & Regenerator

DAC-DFM Bench Scale Test Unit PFD

Preliminary Process Design-PFD

Preliminary TEA

Parameter	Units	Value
Kinetic Rate	g CO ₂ /g DFM/min	2.81E-04
Direct Air Capture CO ₂ Rate	tonne/day	100
Waste H ₂ Flowrate	tonne/day	19
Assumptions		
Electricity to Heat Efficiency	%	75
Electricity Price	\$/kWh	0.03
Waste H ₂ Price	\$/MMBtu	2
Capital Recovery Factor	%	12.4
Results		
TOC	\$44,748	\$ thousands
OPEX	56%	of total cost
CAPEX	42%	of total cost
Electricity intensity	3428	kWh/ton-CO ₂
RNG Production	tonne/day	36
KING Production	MMBtu/day	560,238
RNG Selling Price	\$/MMBtu	15.0
CO ₂ Cost	\$/tonne	0

Cost of CO₂ Capture sensitivity analysis of DAC-DFM Technology as a function of H₂ and RNG price.

The cost of CO₂ capture is below the DOE target of \$100/tonne at various RNG prices from \$9 to \$17/MMBtu and waste H₂ between \$2 and \$8/MMBtu (\$0.23/kg and \$0.9/kg)

Susteon's DAC Technology Spinout-- Sustaera

Our Solution

Direct Air Capture using:

- Non-amine sorbent for CO₂ capture
- An integrated selective heating mechanism
- A low pressure drop support

Resulting in:

- A pathway to < 2,000 kWh/ton of CO₂
- CapEx target <~\$600/ton-yr

Conceptual Design

Key Differentiators

- 1. Energy provided exclusively by renewable sources (solar, wind)
- 2. Abundantly available, low-cost capture agent (alkali metal based)
- 3. Low energy of desorption by controlling the chemistry (~-65 kJ/mol)
- 4. Fast kinetics of adsorption and desorption
- 5. Beneficial effect of moisture in ambient air
- 6. Innovative, highly efficient heating to minimize heat losses
- 7. Scalability using existing supply chain
- 8. Strong IP portfolio

Funding + Customers

Green Climate Adaptation

Gates-Backed Fund Invests in Carbon Capture Startup Sustaera

The company, which completed a \$10 million funding round, has secured Stripe as its first customer.

Raised ~\$1.5M in Grant Funding from:

Raised \$10M in Series A funding from:

Sold 700+ tons of CO₂ Removal to:

Circular Carbon Economy – Multi-trillion Dollar Opportunity

- Stop climate change, return from a CO₂ overshoot, and replace fossil fuels with sustainable, synthetic fuels made with renewable energy
- Replace fossil fuels with liquid carbon-based fuels
 - Inputs are CO₂, H₂O and intermittent renewable energy
 - Cycle 10 50 Gt CO₂/year worldwide through fuels
 - Cycle closes at least in part through the environment
- Restore 100 ppm of excess CO₂ from the atmosphere
 - Remove waste fossil carbon from the environment
 - Safe and permanent storage of 40 Gt CO₂/year for 40 years

Only direct air capture has the potential capacity and scale to close the carbon cycle and remove excess carbon

Thank you

Raghubir Gupta

Cofounder / President, Susteon | Sustaera

rg@susteon.com

Creating solutions for a NET ZERO world www.susteon.com

